A Simple Co-culture System for Generation of Embryonic Stem-Like Cells From Testis
نویسندگان
چکیده
BACKGROUND New research proposes the pluripotency of spermatogonial cells obtained from testis. These spermatogonia-derived stem cells are called embryonic stem-like cells that express embryonic stem cell markers and differentiate to the three germ layers. OBJECTIVES The aim of the present study was to generate embryonic stem-like cells from neonatal mouse testis. MATERIALS AND METHODS The Testis cells were collected from neonatal mouse. After decapsulation, testis was mechanically dissected and dissociated via a two-step mechanical and enzymatic digestion. The spermatogonia and sertoli cells were cultured together in Dulbecco's modified Eagle's medium (DMEM) supplemented with 15% FBS and LIF. Before one week, several small spermatogonia colonies were observed on top of the monolayer of sertoli cells. These colonies were passaged every four days. ES-Like cells colonies that resembled ES cell was appeared within 2-3 weeks (at passages 5). Real time PCR was performed to analyze the expression of a subset of pluripotency markers, as well as germ cell-specific genes. ES Like cells were confirmed with SSEA1, SOX2 and Oct4 immunofluorescence stainng as pluripotency markers. RESULTS The Results showed that at fifth passages, the pluripotency genes; Nanog and c-myc have significant increase in ES-Like cells in compare with spermatogonia cells, whereas the spermatogonial markers; Stra8, mvh, and piwill2 became downregulated. In addition to these pluripotency genes, the ES cell marker SSEA-1, SOX2 and Oct4 were expressed in the ES-like cells, similar to ES cells. CONCLUSIONS This researh indicates pluripotency evidence of ES-like cells derived from testis. ES-like cells shows some molecular characteristics with embryonic stem cells.
منابع مشابه
Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملCombination of In Vivo Cryptorchid Testis and In Vitro Co- Culture System to Obtain High Purification and Proliferation of Mouse Spermatogonial Stem Cells
Background The present study was designed to evaluate the survival and proliferation of spermatogonial stem cells from cryptorchid mouse testis in co-culture system over a 3 weeks period. MaterialsAndMethods Sertoli and spermatogonial cells were isolated from bilateral cryptorchid mouse model testes. Isolated spermatogonial cells were co-cultured with Sertoli cells in minimal essential medium (...
متن کاملCo-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells
Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells. Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence p...
متن کاملA Novel in vitro Co-culture Systems on Differentiation of Embryonic Stem Cells into Oocyte-like Cells in an in vivo Manner
Background:Differentiation of Embryonic Stem Cells into Oocyte-like cells in vitro is challenging. Successful derivation of oocyte from stem cells can provide an alternative source for curing ovogenesis problems. The current study aims to demonstrate a new protocol with two different types of media for differentiating embryonic stem cells (ESCs) into oocyte-like cells ...
متن کاملEstablishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide
Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...
متن کاملEffect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells
Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...
متن کامل